

Anatomy of the Ear, Nasal Cavity, Pharynx and Larynx

John Gassler PT, DPT

Associate Professor of Anatomy

H

F

LMU-DCOM

April 5, 2019

E

Objectives

- 1. Describe the nasal cavity, its general morphology including the walls, openings, nasal septum, conchae, and meatuses.
- 2. Describe and identify the named portions of the pharynx, and important anatomical features of each.
- 3. Describe the important anatomical features and innervation of the external, middle, and inner ear.
- 4. Describe the sensory innervation of the nasal cavity, and the sensory and motor innervation of the glossopharyngeal and vagus nerves related to the pharynx and larynx.

The Ear

- External
 - Auricle
 - External acoustic meatus
- Middle
 - Tympanic cavity
 - Pharyngotympanic tube
- Internal
 - Bony labyrinth
 - Membranous labyrinth

External Acoustic Meatus

- Extends from auricle to tympanic membrane
- Length ≈ 1 inch (2.5 cm)
- Cartilage externally (¹/₃), then bone (²/₃)
- Ceruminous (modified sweat glands) glands secrete <u>cerumen</u>
- Not straight in adults
- Need to pull ear superiorly, posteriorly, and laterally
- <u>Sensory</u> auriculotemporal n.(CN V₃) and vagus (CN X)

Tympanic Membrane

- Tilted anteriorly and inferiorly
- Skin (stratified squamous epithelium) on outside
- Mucous membrane (simple cuboidal) on inside
- Handle of malleolus is attached to inner surface

Tympanic Membrane

в

- Flaccid area superiorly
- Sensory innervation of surfaces:
 - Outer auriculotemporal (V₃), facial (VII), and vagus (X)
 - Inner Glossopharyngeal (IX)

External acoustic meatus

Middle Ear

Auditory Ossicles

- Malleus attached to tympanic membrane
- Incus
- Stapes footplate attached to oval window

<u>Pharyngotympanic</u>

<u>Tube</u>

- AKA auditory tube, Eustachian canal
- Connects anterior part of middle ear cavity with nasopharynx

Middle Ear Ossicles

- Ossicles are suspended from walls of tympanic cavity by ligaments
- Ossicles articulate with each other through synovial joints
- Footplate of stapes articulates with temporal bone at the oval window stabilized by the annular ligament

Pharyngotympanic Tube

- Connects tympanic cavity with nasopharynx
- Lateral ¹/₃ bony; medial ²/₃
 cartilaginous
- Lined by mucous membrane
- Enables middle ear cavity to equalize pressure with atmospheric pressure

Middle Ear Canal

Children more prone to middle ear infections (Otitis Media)

- Thought to be due to auditory tube being shorter and in a more horizontal position
- Fluids from nasopharynx can more easily flow into tympanic cavity

Middle Ear Cavity

Mastoid Air Cells

Mastoid Air Cells

Middle Ear Muscles

Middle Ear Innervation

- Tympanic branch of CN IX enters floor of middle ear
- Forms plexus on medial wall *tympanic plexus*
- Innervates all the mucous membrane of middle ear, mastoid air cells, pharyngotympanic tube
- Lesser petrosal n. leaves cavity to provide parasympathetic innervation of parotid gland

Facial Nerve (CN VII) Relationship to Ear

- Facial n. travels in bony canal between middle and inner ear
- Gives off <u>greater petrosal n.</u> parasympathetic to lacrimal gland
- Gives off branch to stapedius m.
- Gives off <u>chorda tympani n.</u>
- Chorda tympani n. travels through middle ear cavity
 - Parasympathetic to salivary glands
 - Taste from anterior 2/3 tongue
- Exits skull through stylomastoid foramen

Middle Ear Cavity

Inner Ear

Located in petrous portion of temporal bone, lateral and posterior to internal acoustic meatus

Inner Ear

Membranous labyrinth VII and VIII cranial nn. Tympanic membrane Auditory – converts sound waves to action potentials that are sent to CNS

Bony labyrinth

•

Bony Labyrinth

Hollowed-out areas of temporal bone Contains membranous labyrinth

- Semicircular canals
 - Semicircular ducts
- Vestibule
 - Utricle
 - saccule
- Bony cochlea
 - Cochlear duct

Bony Cochlea

Membranous Labyrinth

Semicircular ducts connected to utricle; utricle connected to saccule; saccule connected to cochlear duct – contains <u>endolymph</u> <u>Perilymph</u> is in bony cavity surrounding membranous labyrinth

Membranous Labyrinth - Vestibular

Vestibular Inner Ear

Two sets of sensory receptors:

- Semicircular Ducts (3) sense rotation of head in all planes
 - Receptors cristae
- Utricle and Saccule sense linear acceleration and deceleration of the head, sensitive to force of gravity
 - Receptors maculae

Vestibular Receptors - Cristae

- Ampullary crest (crista) contains hair cells with cilia embedded in gelatinous cupula attached to roof of duct
- Head movement causes fluid (endolymph) to push against cupula, which is deformed like a sail
- Movement of cupula bends cilia on hair cells

Vestibular Receptors - Maculae

- Maculae are the specialized portion of the wall of utricle and saccule
- Cilia of hair cells project into gelatinous otoconial membrane
- Small calcium crystals (otoconia) on surface of the membrane
- Sense gravity and linear movements of head

Vestibular Nerve

Cochlear Duct

- Contains endolymph
- Lies between scala tympani and scala vestibuli
- Pressure waves travel up and down the scala and vibrate the basilar membrane
- Organ of Corti (spiral organ) sits on basilar membrane

Inner Ear Cross Section

Scala vestibuli

Perilymph

Cochlear Endolymph duct

Spiral ganglion

- Organ of Corti sits on basilar membrane
- Tectorial membrane gelatinous membrane over hair cells
- Cilia on surface of hair cells project into tectorial membrane

Perilymph Scala tympani

Basilar membrane

Gilroy Fig 43.20B, p. 596

Cochlear Function

- Vibration of basilar membrane causes stereocilia to bend on hair cells
- Deflection of stereocilia initiates receptor potential in hair cells
- Hair cells depolarize cochlear nerve endings on hair cells
- Action potential sent to brainstem cochlear nuclei

Organ of Corti Frequency Sensitivity

Highest frequency sounds – vibrate <u>base</u> of basilar membrane Lowest frequency sounds – vibrate <u>apical</u> region of membrane

Sound Conduction to Inner Ear

External Ear-collects sound waves Middle Ear-converts to vibrations Inner Ear- converts vibrations to action potentials

- Stapes moves in and out at oval window
- Sound waves transmitted up scala vestibuli toward helicotrema
- Frequency of sound wave causes specific portion of basilar membrane to vibrate
- Hair cells at that location create action potentials
- Pressure wave travels down scala tympani and pressure released at round window

Nasal Cavity – Nasal Conchae

Conchae divide each nasal cavity into 4 air channels:

- Spheno-ethmoidal recess
- Superior, middle, and inferior meatuses

Nasal Cavity – Sinus Openings

Infundibulum opening of frontonasal duct that drains the frontal sinus and anterior ethmoidal cells Opening of middle ethmoidal cells onto ethmoidal bulla

APAR APAR

A STATE TAL AND AND A

Opening of posterior ethmoidal cells into lateral wall of superior meatus

Opening of sphenoidal sinus into spheno-ethmoidal recess

Semilunar hiatus

Opening of maxillary sinus in

floor of semilunar hiatus

Opening of nasolacrimal duct

Gray's Fig 8.235C, p. 1079

Deviated Nasal Septum

Roof and Floor of Nasal Cavity

Nasal, frontal, ethmoid, sphenoid bones

Gray's Fig 8.234, p. 1077

- Maxillary and palatine bones
- Soft palate

Gray's Fig 8.233, p. 1077

Lateral Walls of Nasal Cavity

Three nasal conchae: Superior and middle (ethmoid bone); Inferior nasal concha – AKA turbinate bones

Innervation of Nasal Cavity

Pharynx – Mid-sagittal

Divisions:

- <u>Naso</u>- posterior apertures of nasal cavity (choanae) to edge of soft palate
- <u>Oro</u> soft palate to tip of epiglottis
- <u>Laryngo</u>- epiglottis to lower edge of cricoid cartilage

Floor of Nasal Cavity

- Rima vestibuli triangular opening between vestibular folds
- Rima glottidis triangular opening between vocal folds

Larynx Nerve Supply

All innervation is by branches of Vagus n. (CN X) Superior laryngeal n.

- <u>Internal br.</u> sensory innervation of larynx above vocal folds
- <u>External br.</u> motor to cricothyroid m.

Recurrent laryngeal n.

- <u>Sensory</u> to larynx inferior to vocal folds
- <u>Motor</u> to all other intrinsic muscles
- May be referred to as inferior laryngeal n. 45

Larynx Nerve Supply

