

Monitoring of Infectious Hepatitis

- Compare and contrast the major types of hepatitis viruses and explain the disease transmission and progression processes in viral hepatitis cases
- Describe how the clinical laboratory may be used to diagnose and monitor the course of infectious hepatitis
- Compare and contrast the current methods for the treatment and prevention of infectious hepatitis

Hepatitis

- General term for inflammation of the liver
- Can be due to non-infectious causes such as:
 - Autoimmune disorders
 - Alcohol abuse
 - Chemical agents
 - Obstruction

Viral Hepatitis

- Can be caused by a number of viruses
 - Referred to as **Infectious Hepatitis**
 - Primary hepatitis viruses are those whose main clinical effects are on the liver
 - Secondary hepatitis viruses are those that produce liver inflammation secondary to other disease processes

Primary Hepatitis Viruses

- Hepatitis A Virus (HAV)
- Hepatitis B Virus (HBV)
- Hepatitis C Virus (HCV)
 - Hepatitis D Virus (HDV)
 - Hepatitis E Virus (HEV)

Primary Hepatitis Viruses

- Two main routes of transmission:
 - Fecal-oral route contaminated food or water
 - Hepatitis A virus
 - Hepatitis E virus
 - <u>Parenteral route</u> contact with blood or body fluids
 - Hepatitis B virus
 - Hepatitis C virus
 - Hepatitis D virus

Clinical Forms of Hepatitis

- <u>Acute hepatitis</u>
 - The typical form
 - Includes associated jaundice
 - Includes 4 phases of illness:
 - Incubation phase liver enzymes rise
 - Preicteric phase symptoms occur
 - Icteric phase jaundice occurs
 - Convalescence recovery

Clinical Forms of Hepatitis

- Fulminant hepatitis
 - Rare form associated with hepatic failure
- <u>Subclinical hepatitis</u>
 - Light or no symptoms
- Chronic hepatitis
 - Hepatic inflammation and necrosis that lasts for at least 6 months

Acute Hepatitis

• All primary hepatitis viruses produce similar clinical syndromes

- Symptomology
 - Flu-like symptoms
 - Loss of appetite
 - Nausea & vomiting
 - Right upper quadrant pain

Acute Hepatitis

- <u>Progression of disease</u>
 - Hepatomegaly
 - Jaundice
 - Dark urine
 - Light stools

Acute Hepatitis

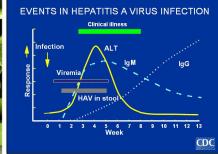
- Laboratory results:
 - ALT & AST rise quickly due to necrosis of liver cells
 - These are the most useful tests for detecting hepatic cell damage
 - ALT is most specific since highest levels are in the liver
 - ALT levels may increase to 100 times
 normal
 - Bilirubin levels rise as disease progresses

Hepatitis A Virus

- HAV is an RNA virus
- Transmitted by fecal-oral route
 And possibly by close person-to person contact
- Incubation period of 28 days
- Most infected adults develop acute hepatitis
- Most infections in children remain subclinical

Acute Hepatitis A

- Symptoms have an abrupt onset and last 1 to 8 weeks
- Infections <u>do not</u> progress to a chronic state
- Liver enzymes usually return to normal within 6 months



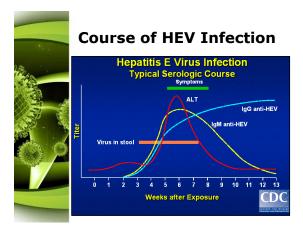
Hepatitis A – Lab Diagnosis

- Presence of IgM antibodies to HAV indicate <u>active disease</u>
 - IgM antibodies peak during the first month of infection, and become undetectable within 6 to 12 months
- Presence of IgG antibodies indicates **immunity** to HAV
 - IgG antibodies are produced either due to an infection or due to immunization

Course of HAV Infection

Hepatitis A Treatment & Prevention

- No specific treatment other than supportive therapy
- Preventive measures include:
 - Immunization
 - Food safety
 - Proper sanitation
 - Proper handwashing and hygiene


Hepatitis E

- HEV is an RNA virus
- Transmitted by fecal oral route - Usually from contaminated drinking water in developing nations
 - Infection in U.S. is usually associated with travel to endemic regions
- Presents as acute hepatitis and <u>does</u> **not** progress to a chronic state

Hepatitis E – Lab Diagnosis

- IgM antibodies are present during acute infection but decline rapidly
- IgG antibodies persist long-term and provide some immunity

Hepatitis E Treatment & Prevention

- No specific treatment other than supportive therapy
- Preventive measures include:
 - Food & water safety
 - Proper sanitation
 - Proper handwashing and hygiene

Hepatitis B

- HBV is a DNA virus
- Transmitted by the parenteral route
 - Transmission has been associated with:
 - Sexual contact, blood transfusions, sharing of needles, tattooing, & occupational needle-stick injury
 - May also be transmitted from mother to infant during delivery or from breast feeding

Hepatitis B Infection

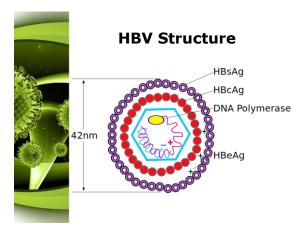
- Incubation period of 60 to 90 days
- <u>Clinical course is highly variable</u>
 - Many remain subclinical &
 - asymptomatic
 - 30 to 50% develop symptoms of acute hepatitis which last 1 to 4 weeks

Hepatitis B Infection

- Most HBV-infected adults recover within 6 months and develop immunity
- 1 to 2% develop **fulminant disease** - High fatality rate
- <u>Chronic HBV infection</u> develops in 5 to 10% of infected adults
 - These have an increased risk of developing cirrhosis or hepatocellular carcinoma

Hepatitis B Epidemiology

- About 300 million people, worldwide, are thought to be chronic carriers of the virus
- It is estimated that HBV causes about 1,000,000 deaths per year, worldwide


HBV Structure

- Nucleocapsid core surrounded by an outer envelope of lipoprotein
- Viral core contains:
 - Circular, double-stranded DNA
 - DNA polymerase
 - Hepatitis B core antigen (HBcAg)
 - Hepatitis Be antigen (HBeAg)

HBV Structure

- <u>Hepatitis B surface antigen</u> (HBsAg) is a protein found in the outer envelope of the virus
- **HBsAg** is also found in particles that float freely in the blood of infected individuals

HBV – Serologic Markers

- Viral proteins, or the antibodies directed against them, are used to:
 - Diagnose HBV infection
 - Monitor the course of infection
 - Assess immunity to the virus
 - Screen blood products

Hepatitis B Surface Antigen (HBsAg)

- The <u>first marker to appear</u> in HBV infection
- Becomes detectable 2 to 12 weeks after exposure
- Levels peak during <u>acute stage</u> of infection, then decline as the patient develops antibodies to the antigen

Hepatitis B Surface Antigen (HBsAg)

<u>HBsAg is an indicator of an</u> active infection

- <u>Acute infections</u>

 Levels become undetectable by 12 to 20 weeks after onset of symptoms
- <u>Chronic infections</u> - Levels remain elevated

Hepatitis Be Antigen (HBeAg)

• Appears shortly after HBsAg appears

<u>Disappears</u> shortly <u>before</u> HBsAg disappears

• Present during periods of active replication

- Indicates a <u>high degree of infectivity</u> when present
- May be elevated during chronic infection

Hepatitis B Core Antibody (Anti-HBc)

- The HBcAg is <u>not detectable</u> in serum because the viral envelope masks it
- But as the host develops an immune response, antibodies to HBc appear
- IgM anti-HBc is the first to appear

 <u>IgM anti-HBc is an indicator of a</u> <u>current or recent acute infection</u>

Anti-HBc IgM

- Usually appears 2 weeks after HBsAg in an acute infection
- May be detected for up to 6 months
- Useful for detecting infection during the "core window"
 "Core window" is the period of time between the disappearance of HBSAg and the appearance of anti-HBsAg
 This makes it useful for screening donor blood

Anti-HBc IgG

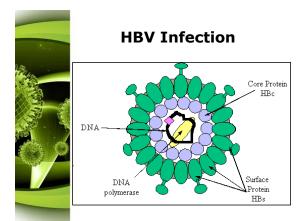
- Appears before IgM anti-HBc disappears
- Persists for the lifetime of the individual
- May be used to detect a past infection

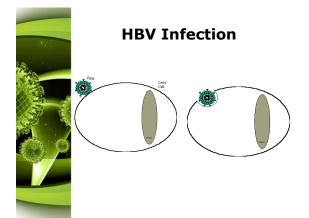
Hepatitis Be Antibody (Anti-HBe)

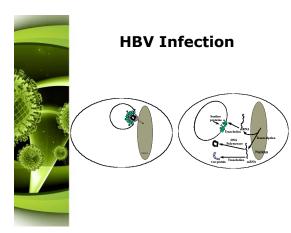
- Appears shortly after the disappearance of HBeAg
- Indicates that the patient is recovering from HBV

Hepatitis B Surface Antibody (Anti-HBs)

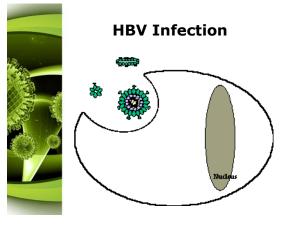
- Appears during the recovery period of acute HBV
- Appears weeks to months after the disappearance of HBsAg
- Provides protective immunity
- Not produced during chronic HBV infection – immunity fails

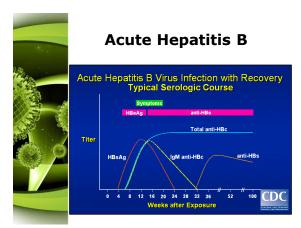


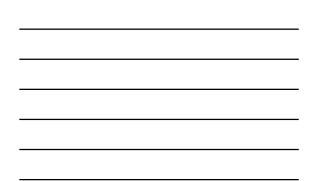

Anti-HBs

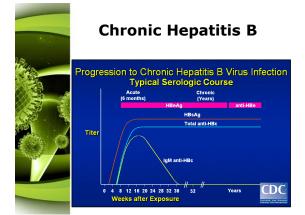

• Produced after immunization with the HBV vaccine

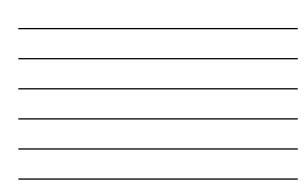
• The vaccine consists of recombinant HBsAg produced from genetically engineered yeast


• Used to test for immunity







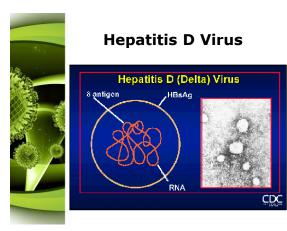

HBV Infection

HBV Treatment

- Acute cases are typically selflimiting and only require supportive therapy
- Chronic cases are treated with antiviral therapies such as interferon and other antiviral agents such as Ribavirin
- Molecular methods such as PCR can be used to measure viral DNA to monitor antiviral therapy

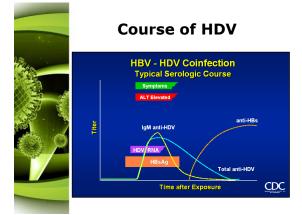
HBV Prevention

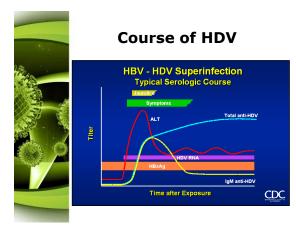
- Primary preventive measures:
 - Vaccination is #1
 - Hand hygiene
 - Safe handling and disposal of sharps and biological waste
 - Safe cleaning of equipment
 - Testing of donated blood
 - Training of health personal
 - Safe sex practices


Hepatitis D

- Transmitted through parenteral route
- Can only occur in the presence of HBV
- Because HDV incorporates the HBsAg into its outer protein coat which it requires to replicate & infect host cells

Hepatitis D


- Presence of HDV in people infected with HBV results in a greater risk of fulminant hepatitis or chronic liver disease
- Indicated by the presence of anti-HDV in the patient's serum


2.0		
	(Barrow	e e e e
A REAL		

Hepatitis D Antibody (Anti-HDV)

- IgM anti-HDV appears 6 to 7 weeks after exposure
- Remains elevated through acute phase of illness, then declines
- IgG anti-HDV is produced during convalescence & declines to undetectable levels if infection resolves
- Both IgM & IgG remain elevated in chronic infections

Hepatitis D Treatment & Prevention

• Treatment and prevention is the same as for Hepatitis B due to its dependence on HBV

Hepatitis C

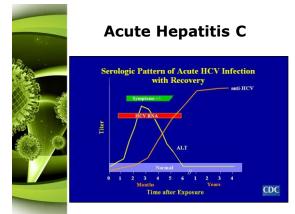
- Transmitted through the parenteral route
- Average incubation time of 7 to 8 weeks
- Produces symptoms of acute hepatitis in 20% of individuals
- Majority of infections are subclinical & asymptomatic

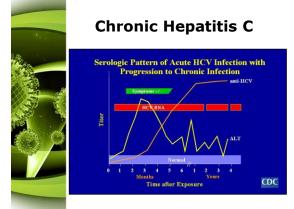
Hepatitis C

- But <u>85% develop a chronic</u> <u>infection</u> which may slowly develop into cirrhosis
- HCV accounts for 1/3 of liver transplants
 - Antiviral therapy following liver transplant is essential to prevent or slow the rate of reinfection

Hepatitis C

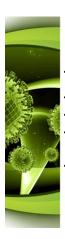
- HCV is an RNA virus
- 6 different genotypes and 50 subtypes have been discovered
- A high mutation rate allows it to escape the immune response and persist in the patient


Hepatitis C Testing


- HCV is diagnosed by detecting HCV antibodies
- With current assays, antibodies can usually be detected at the time symptoms appear (7 to 8 weeks after exposure)
- Current tests do not distinguish between acute or chronic infection

Hepatitis C Testing

- Molecular testing such as PCR may also be used to confirm positive results
- PCR may be done as a qualitative or quantitative test
- Quantitative PCR can be used to monitor the viral load
- HCV RNA appears in serum in as little as 1 week


Hepatitis C Treatment

- Currently the standard treatment is combination therapy consisting of: – Interferon
 - Ribavirin
- Interferon is poorly tolerated in some patients
 - However, combination therapy can be potentially life-saving
- There is no vaccine available

Hepatitis C Prevention

- Primary preventive measures:
 - Hand hygiene
 - Safe handling and disposal of sharps and waste
 - Safe cleaning of equipment
 - Testing of donated blood
 - Training of health personal
 - Safe sex practices

References

Friedman, R.M., S. Contente. 2010. Treatment of Hepatitis C Infections with Interferon: A Historical Perspective. *Hepatitis Research and Treatment*. 2010:323926.

Kaplan, L.A. 2003. Clinical Chemistry, $4^{\rm th}$ ed. Mosby, St. Louis.

Stevens, C.D. 2010. Clinical Immunology & Serology, $3^{\rm rd}$ ed. F.A. Davis, Philadelphia.

Sugawara, Y., S. Tamura, and N. Kokudo. 2010. Antiviral Treatment for Hepatitis C Virus Infection after Liver Transplantation. *Hepatitis Research and Treatment*. 2010:475746.

2010:475746. Turgeon, M.L. 2009. *Immunology and Serology in Laboratory Medicine*, 4th ed. Mosby, St. Louis.

Contact Information

Steven Edwards, MS(MLS)

Assistant Professor of Medical Lab Science Lincoln Memorial University 6965 Cumberland Gap Pkwy Harrogate, TN 37752 Office: 423-869-6232 Email: steven.edwards@LMUnet.edu