

MLS Continuing Education Conference November 2014

PACE Session # 304 – 113 - 14 Urinary Casts: The Importance of Laboratory Identification

Urinalysis – The Beginning

- The field of laboratory medicine started with the analysis of urine
 - Records of urine study are found in cave drawings and Egyptian hieroglyphics
 - In the Middle Ages, urine examination was a major focus of physicians
 - Observations were basic, including:
 - Color
 - Clarity
 - Odor
 - Volume
 - Sweetness

- <u>17th century</u>
 - Microscope was invented
- This led to examination of urine sediment
 - Methods were developed for the quantitation of urine sediment

- RBCs
- WBCs
- Epithelial cells (3 types)
- Oval fat bodies
- Bacteria
- Yeast

- Parasites
- Spermatozoa
- Mucus
- <u>Various casts</u>
- Various crystals

Urinary Casts

- Among the various constituents of urinary sediment, casts are unique in that:
 - They provide us with a microscopic view of the conditions within the nephrons
- Nephrons are functional units of the kidney
 - Each kidney contains between 1 and 1.5 million

Copyright © 2014 F. A. Davis Company www.fadavis.com

Cast Composition

- All urinary casts are composed of the renal glycoprotein known as <u>Uromodulin</u>
 - More commonly known as Tamm-Horsfall protein
- Uromodulin is produced <u>exclusively</u> in the kidney by the epithelial cells of the thick ascending loop of Henle
 - Also by the beginning segment of the distal convoluted tubule
 - Under normal conditions uromodulin is the most abundant protein found in urine

• Characteristics:

- It is a mucoprotein
 - Approximately 70% protein & 30% carbohydrate
 - Secreted by RTE cells of the thick ascending loop and the distal convoluted tubule
 - Secreted into the filtrate as a soluble monomer
- It has a high tendency to form polymers
 - There is a high gel-tendency
- Tamm-Horsfall protein is not detected by the reagent strip protein reaction

Uromodulin Secretion

Uromodulin Function

- Biological function is still not fully understood
- What we do know:
 - Uromodulin is linked to water and electrolyte balance (polymeric form)
 - Soluble form helps to protect against urinary tract infection by fimbriated bacteria
 - Research has also suggested that uromodulin helps to prevent kidney stones by inhibiting the growth of the monohydrate form of calcium oxalate crystals

- Urinary casts are formed when there is an increase in uromodulin polymerization which increases gelformation
- Factors which contribute to increased polymerization:
 - Urinary stasis which results in higher osmolality
 - Increasing concentrations of sodium and calcium
 - Decreasing pH
 - Increasing levels of uromodulin
 - Secretion increases with stress and physical exertion

Cast Formation

- <u>Step-by-step formation of a cast matrix as studied by</u> <u>electron microscopy</u>:
 - Uromodulin aggregates into individual protein fibrils which are attached to tubular epithelial cells
 - Protein fibrils interweave to form a loose network
 - At this point any constituents present in the filtrate may become enmeshed
 - Protein fibrils continue to interweave, resulting in a solid matrix
 - Blockage of the lumen decreases urine flow & increases pressure
 - Protein fibrils become detached from the epithelial cells
 - Cast is excreted

LINCOLN MEMORIAL

Specimen Concerns

- For proper cast identification:
 - Specimens should be as fresh as possible
 - Casts and cells disintegrate quickly especially in alkaline urine
 - Centrifuge at least 10 mL of urine
 - Scan for casts whenever the protein is positive
 - Scan for casts with 10x magnification
 - If using slide and coverslip, be sure to scan outer edges
 - Identify with 40x magnification

Hyaline Casts

- Most common & basic cast seen
- Almost pure uromodulin
- Colorless and difficult to see
- <u>Significance</u>:
 - Up to 2 casts/lpf is a normal finding
 - Large numbers may be seen in cases of dehydration or in times of physical or emotional stress

Hyaline Casts – Unstained & Stained

RBC Casts

- RBC casts indicate bleeding within the nephron
 - Primarily associated with
 Glomerulonephritis
 - Protein and freestanding RBCs should also be present
 - Ability to detect a visible matrix is important for ID

RBC Casts – Stained & Unstained

- **Glomerulonephritis** accounts for 10%-15% of end stage renal failure cases in the USA
 - Begins with inflammation within the glomerulus mediated by autoimmune processes
 - Secondary impairment of renal function occurs over days to weeks
- Early diagnosis is **extremely** important
 - Even patients with mild renal impairment may quickly lose kidney function
 - Patients must be treated urgently

- <u>Post-infectious Glomerulonephritis</u>
 - A form of acute glomerulonephritis seen after certain bacterial, viral, fungal, or parasitic infections
 - Becoming an increasingly seen complication of endocarditis after IV drug abuse
 - Post-streptococcal glomerulonephritis is the most common
 - Occurs within 12 weeks of initial infection with certain strains of *Streptococcus pyogenes*
 - Immune complexes composed of specific antibodies and bacterial M-protein are deposited on the basement membrane
 - Anti-streptolysin O titer is diagnostically useful

• IgA nephropathy

- Most common form of glomerulonephritis
- Immune complexes containing IgA are deposited primarily on the mesangium of the glomerulus
- Patients have increased levels of IgA
- Disease is relatively silent for up to 20 years except for periodic episodes of hematuria
- Gradually progresses to chronic
 glomerulonephritis and end stage renal disease

Henoch-Schonlein Purpura

- Small vessel vasculitis
- Primarily in children following respiratory infections
- Usually begins with a rash of raised, red patches
- Respiratory symptoms may include bloody sputum
- Arthritis may be present
- Abdominal pain with bloody stools
- Renal involvement is most serious complication
 - Up to 50% of patients progress to a more severe form of glomerulonephritis and possibly renal failure

Goodpasture Syndrome

- Appearance of a specific, cytotoxic autoantibody against the basement membranes of the alveoli and the glomeruli following a viral respiratory infection
 - Antiglomerular basement membrane antibody (anti-GBM)
- Initial symptoms are respiratory including bloody sputum and difficulty breathing
- Chronic glomerulonephritis and end stage renal disease are common
 - Disease progression can be rapid

- Wegener Granulomatosis
 - Granuloma-producing, small vessel vasculitis
 - Primarily affecting lungs and kidneys
 - Pulmonary involvement is first presentation of disease
 - Key to diagnosis is the production of an autoantibody known as anti-neutrophilic cytoplasmic antibody (ANCA)
 - Commonly progresses to chronic glomerulonephritis and end stage renal disease

- <u>Rapidly Progressive Glomerulonephritis</u>
 - Initiated by the depositing of immune complexes in the glomerulus
 - Usually a complication of a systemic immune disorder such as systemic lupus erythematosus
 - Also known as crescentic glomerulonephritis
 - Poor prognosis
 - Often ends in renal failure

Renal Tubular Epithelial Cell Casts

- Presence represents advanced destruction of the renal tubules
 - Acute tubular necrosis
- <u>Potential causes</u>:
 - Heavy metal toxicity
 - Chemical toxicity
 - Drug-induced toxicity
 - Viral infections
 - Transplant rejection
 - Interruption of renal blood flow

- <u>Nephrotoxic agents include</u>:
 - Aminoglycoside antibiotics
 - Amphotericin B
 - Ethylene glycol
 - Heavy metal exposure
 - Mushroom poisoning
 - Hemoglobin & myoglobin
- May also see granular casts, waxy casts, & broad casts

RTE Casts

- Staining can help in identifying RTE casts
- This RTE cast has been stained with Sternheimer-Malbin stain

RTE Casts

- This RTE cast came from a patient with active Hepatitis B
- The cells are stained due to the absorption of bilirubin from the filtrate

- Presence indicates lipiduria which is most often associated with Nephrotic syndrome
- Usually seen along with oval fat bodies and free fat droplets
- Identity may be confirmed with polarized light microscopy or staining with lipid stains such as Sudan III or Oil Red O

Fatty Casts - Stained & Polarized

The Nephrotic Syndrome

- Acute onset due to systemic shock or the progression of other glomerular disorders, such as glomerulonephritis
 - Glomerular membrane is damaged, resulting in a less tightly connected barrier
 - <u>Net Result</u>:
 - High molecular weight proteins and lipids are passed into the urine
 - Loss of albumin stimulates the hepatic production of lipids
 - Loss of protein leads to lower oncotic pressure which leads to edema
 - Depletion of immunoglobulins and coagulation factors places the patient at an increased risk of infection & coagulation disorders

The Nephrotic Syndrome

- Both glomerular and tubular damage may occur
- Condition may progress to chronic renal failure

- Additional sediment that may be found:
 - Oval fat bodies
 - Free fat droplets
 - RTE cells & casts
 - Waxy casts

WBC Casts

- WBC casts with the presence of bacteria indicate pyelonephritis
 - May be acute or chronic
 - Results from the ascending movement of bacteria
 - Possible complications:
 - Renal abscess
 - Renal impairment
 - Septic shock

Chronic Pyelonephritis

- Chronic cases of pyelonephritis are usually due to structural defects which allow urinary reflux
 - Usually diagnosed in children
 - Leads to tubular damage and renal failure
- May also see waxy casts & broad casts

WBC Casts

- WBC casts <u>without</u> the presence of bacteria indicate acute interstitial nephritis
 - Primarily associated with an allergic reaction to a medication that occurs within the renal interstitium, leading to inflammation of renal interstitial tissues and renal tubules
 - penicillin, ampicillin, cephalosporins, NSAIDs, thiazide diuretics

- High percentage of eosinophils present
- Hansel stain may be used for identification of urinary eosinophils

Granular Casts

Fine Granular

Coarse Granular

Granular Casts

• May occur as coarse or fine granular casts

• Origin of granules can be:

- RTE lysosomes (same significance as hyaline casts)
 - Excreted during normal metabolism
 - More are seen after exercise and activity
- Disintegration of cellular casts
 - Pay extra attention to specimens with cells and granular casts

Degenerating RBC & WBC Casts

- Presence indicates extreme urine stasis
 - Seen in cases of renal failure
- Degenerated hyaline and granular casts

Waxy Casts

- Brittle appearance
- Highly refractile
- Often fragmented with jagged ends and notches
- Well visualized with stain

- Also significant of extreme renal stasis
 - Also referred to as "renal failure casts"
- <u>Formed in</u>:
 - Collecting duct, or
 - Distal tubule that is widened due to destruction

Granular & Waxy Broad Casts

Renal Failure

- May be chronic or acute
- Chronic renal failure is seen as a progression of original renal diseases to end stage renal disease
- Casts that may be present:
 - Granular
 - Waxy
 - Broad

Acute Renal Failure

• Onset is sudden

• Usually reversible by correcting the cause

- <u>Causes may be</u>:
 - Prerenal decreased blood flow
 - Renal acute disease
 - Postrenal obstruction

Acute Renal Failure

- Expected sediment related to cause:
 - RTE cells & casts = decreased blood flow
 - RBCs & casts = glomerular damage
 - WBCs & casts = infection/inflammation

Causes of Acute Renal Failure

- <u>Prerenal</u>
 - Decreased blood pressure/cardiac output
 - Hemorrhage
 - Burns
 - Surgery
 - Septicemia
- <u>Renal</u>
 - Acute glomerulonephritis
 - Acute tubular necrosis
 - Acute pyelonephritis
 - Acute interstitial nephritis

- <u>Postrenal</u>
 - Renal calculi
 - Tumors
 - Crystallization of ingested substances

What is the most likely condition?

What is the most likely condition?

What is the most likely condition?

References

- Chung, V., C. Tai, C. Fan, and C Tang. 2014. Severe Acute Pyelonephritis: A Review of Clinical Outcome and Risk Factors for Mortality. *Hong Kong Med J*. 2014;20(4):285-89.
- Neumann, I, and P. Moore. 2014. Pyelonephritis (Acute) in Non-Pregnant Women. *Clin Evid (Online)*. 2014:25373019.
- Perazella, M. 2010. Drug-induced Acute Interstitial Nephritis. *Nat Rev Nephrol.* 2010;6(8):461-70.
- Strasinger, S.K. 2014. Urinalysis and Body Fluids, 6th ed. F.A. Davis, Philadelphia.
- Vinen, C., and D. Oliveira. 2003. Acute Glomerulonephritis. *Postgrad Med J.* 2003;79:206-213.

Contact Information

Steven Edwards, MS(MLS)

Assistant Professor of Medical Lab Science

- Lincoln Memorial University
- 6965 Cumberland Gap Pkwy
- Harrogate, TN 37752
- Office: 423-869-6232
- Email: steven.edwards@LMUnet.edu